Двухвыборочный t-тест (independent sample T-TEST)
двухвыборочный t-тест (independent sample T-TEST)
Вариант команды для выполнения процедуры T-TEST для сравнения средних в двух выборках имеет следующий вид:
T-TEST/GROUPS V4(1,3)/VARIABLES = V9 lnV14m.
Подкоманда GROUPS указывает переменную группирования; в скобках задаются два значения этой переменной, определяющие группы. Например, приведенная команда будет выполняться только для групп объектов, у которых V4 принимает указанные значения 1 и 3. VARIABLES задает сравниваемые (зависимые) переменные для выделенных групп объектов. Объекты можно также разбить на две группы, указав в параметре GROUPS одно значение:
T-TEST /GRO v9(30)/VAR V9 lnV14m.
В этом случае вся совокупность будет разделена на те объекты, на которых указанная переменная не больше заданного значения (v9? 30), и те, у которых она больше (v9>30).
Процедурой T-TEST проверяется гипотеза равенства средних, при этом предполагается нормальность распределения генеральной совокупности. Процедура подсчитывает средние для пары групп, стандартные ошибки, статистики и их значимость. При сравнении двух выборок нас интересует, насколько случайный характер носит различие средних - отличаются ли они значимо?
В зависимости от предположения о равенстве дисперсий испльзуются разные варианты t-статистик.
Если не предполагается равенство дисперсий в группах, то для сравнения средних принято использовать статистику
, которая в условиях гипотезы равенства матожиданий и нормальности X имеет распределение Стьюдента, число степеней которого оценивается на основе оценок дисперсий.Если заранее известно о равенстве дисперсий в группах, то предпочтительнее статистика
.При определении ее величины предварительно вычисляется объединенная дисперсия
.Из теории известно, что при условии равенства дисперсий вычисляемая величина Sp есть несмещенная оценка дисперсии, и статистика t также имеет распределение Стьюдента.
Для проверки равенства дисперсий используется статистики Ливиня, имеющая распределение Фишера.
Двусторонней наблюдаемой значимостью, вычисляемой процедурой T-TEST, является вероятность случайно получить различия средних, такие, что ¦t-теоретическое¦>¦t-выборочного¦. Если значимость близка к 0, делаем вывод о неслучайном характере различий.
Результат выдается в двух таблицах. В первой размещены средние и характеристики разброса в группах, во второй - результаты их сравнения.