Факторный анализ
7.1. Факторный анализ
Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию, что и исходная матрица. В основе моделей факторного анализа лежит гипотеза, что наблюдаемые переменные являются косвенными проявлениями небольшого числа скрытых (латентных) факторов. Хотя такую идею можно приписать многим методам анализа данных, обычно под моделью факторного анализа понимают представление исходных переменных в виде линейной комбинации факторов.

Факторы F построены так, чтобы наилучшим способом (с минимальной погрешностью) представить Х. В этой модели "скрытые" переменные Fk называются общими факторами, а переменные Ui специфическими факторами ("специфический" -это лишь один из переводов применяемого в англоязычной литературе слова Unique, в отечественной литературе в качестве определения Ui встречаются также слова "характерный", "уникальный"). Значения aik называются факторными нагрузками.
Обычно (хотя и не всегда) предполагается, что Xi стандартизованы (

В этих условиях факторные нагрузки aik совпадают с коэффициентами корреляции между общими факторами и переменными Xi. Дисперсия Xi раскладывается на сумму квадратов факторных нагрузок и дисперсию специфического фактора:


Величина


В соответствии с постановкой задачи, необходимо искать такие факторы, при которых суммарная общность максимальна, а специфичность - минимальна.