Количественные шкалы:
ИНТЕРВАЛЬНАЯ шкала предполагает, что можно определить не только порядок значений, но и расстояние между значениями. Эта шкала, однако, такова, что не имеет смысла рассматривать, во сколько раз одно значение больше другого. Пример: шкала измерения температуры по Цельсию.
ШКАЛА ОТНОШЕНИЙ в дополнение к свойствам интервальной шкалы позволяет измерять пропорции значений. Например, мы можем смело заявить, что зарплата в 1000$ вдвое выше зарплаты в 500$.
Техника анализа переменных, измеренных в количественных шкалах (интервальной и шкале отношений) обычно одинакова. В соответствии с типом шкалы измерения переменные относят к номинальным, ординальным (ранговым) и количественным типам переменных.
К особому типу относят переменные, имеющие два ответа - "да" и "нет" (например, "Имеете ли Вы телевизор?"). Эти переменные называют дихотомическими. Их удобно кодировать цифрами 1 ("да") и 0 ("нет"). Эти переменные представляют простейший вид номинальных переменных, они выражают количество (0 или 1) и поэтому часто используются в количественном анализе.
Такая классификация переменных несколько упрощает действительность. Например, переменная "время суток" при исследовании бюджета времени имеет "кольцевую" структуру, поскольку 0 часов эквивалентно 24 часам.
Еще пример: ответ на вопрос о доходах от личного подсобного хозяйства может представлять определенную сумму, быть ответом "не имею подсобного хозяйства" или ответом "не знаю" - здесь значения только частично являются количественными и упорядоченными. При кодировании значений таких значений используются специального вида коды, которые в принципе не могут встретиться в данных, например в RLMS "затрудняюсь ответить", "отказ от ответа" и "нет ответа" в вопросе о весе респондента кодируются кодами 997, 998 и 999 соответственно. Не забудьте использовать специальные команды SPSS (см. ниже команду Missing values), чтобы объявить эти числовые значения кодами неопределенности, чтобы по ошибке не получить средний вес респотдента в больше 300 килограммов!