Электронный учебник справочник по SPSS

       

Тест медиан



5.2.2. Тест медиан

Этот тест позволяет сравнивать распределения исследуемой переменной сразу в нескольких группах. Тест весьма груб, но прост.

NPAR TESTS MEDIAN = V14 BY V1(1,3).

Внешне задание теста похоже на задания критерия Колмогорова-Смирнова.

Задание сравниваемых групп. После слова BY за именем переменной в скобках указывается интервал значений. В приведенном примере сравниваются распределения в трех группах. Тестом можно сравнить также и пару групп, если в скобках вначале указать большее значение, затем меньшее (при задании V4(3,1) сравниваются только 1-я и 3-я группы).

Суть проверки гипотезы состоит в следующем. Значения исследуемой переменной (в нашем примере - V14) делятся на две группы: больше медианы и меньше или равно медиане. Такое разделение можно считать заданием новой, дихотомической переменной. Вычисляется таблица сопряженности полученной дихотомической переменной и переменной, задающей группы. Далее применяется известный критерий Хи-квадрат. Если величина наблюдаемой значимости критерия мала, естественно предположить, что распределение исследуемой переменной в группах различается существенно.

Замечание. Для получения дихотомии можно, также, навязать точку "разрыва" переменной, не совпадающую с медианой, указав в скобках за словом MEDIAN соответствующее значение.

Пример. Курильское обследование проходило в 21 городе Западной Сибири. Экспертным путем все города разделены на 4 типа: 1 растущие, 2 стабильные, 3 крупные, 4 гиганты. Типу города в наших данных соответствует переменная TP.

Исследуется связь доходов и типа населенного пункта.:

npar test med=v14 by TP(1,4).



Содержание раздела