Взвешивание выборки WEIGHT
Социологи достаточно часто некорректно работают со статистическими данными. К примеру, перед ними стоит задача изучить социальные факторы людей, занятых в правовых органах. Известно, что в органах юстиции занято 2% трудоспособного населения. При определении объектов исследования на практике возникают трудности с репрезентативностью выборки. Например, если будет отобрано 500 человек, то из них может оказаться только 10 занятых в органах юстиции. Их обследование будет недостаточно для формирования выводов.
Поэтому социологи осознанно выбирают большее число занятых в этих органах, например 50 из 500. Иногда они рассчитывают целую половозрастную, отраслевую и т.д. таблицу, по которой решают, сколько человек в каждой социальной группе опросить. Это, как правило, деформирует выборку, от которой требуется репрезентация населения, например, всего города. Чтобы уменьшить влияние деформированности выборки на результаты статистического анализа, применяют взвешивание объектов: группы, которые были искусственно уменьшены, выбираются с весовым коэффициентом, превышающим единицу. Обычно суммарный вес объектов равен числу объектов в рассматриваемом файле.
Пусть, например, опрошено 300 человек, из них 100 мужчин, 200 женщин (бухгалтеров застать на рабочем месте было проще всего). Предполагается, что в генеральной совокупности 50% мужчин, 50% женщин. Целесообразно учитывать мужчину с весом 1.5, а женщину - с весом 0.75, тогда с учетом весов выборка будет выровнена.
Пусть переменная SEX содержит сведения о поле респондентов (1 - мужской, 2 - женский). Соответствующие веса будут назначены соответствующими командами
Recode SEX (1=1.5)(2=0.75) into wsex.
WEIGHT by wsex
Execute.
Вообще, если известно распределение объектов k групп в генеральной совокупности p1,…,pk; получено частотное распределение n1,…,nk, то i-й группе должен быть
приписан вес wi=pi/ni*n, где n= | . |
Назначение веса можно сделать также через меню редактора данных (DATA->WEIGHT CASES).
Замечания: взвешивание - это не физическое повторение наблюдения. Если значение веса отрицательное или неопределенное (предварительно определенное как SYSMIS), то оно обрабатывается статистическими процедурами как вес, равный нулю.